
www.manaraa.com

UNLV Theses, Dissertations, Professional Papers, and Capstones

5-1-2016

Parallel Static Object Detection Parallel Static Object Detection

Tirambad Shiwakoti
University of Nevada, Las Vegas, shiwakot@unlv.nevada.edu

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Computer Sciences Commons

Repository Citation Repository Citation
Shiwakoti, Tirambad, "Parallel Static Object Detection" (2016). UNLV Theses, Dissertations, Professional
Papers, and Capstones. 2739.
https://digitalscholarship.unlv.edu/thesesdissertations/2739

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2739&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2739&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/2739?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2739&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu

www.manaraa.com

PARALLEL STATIC OBJECT DETECTION

By

Tirambad Shiwakoti

Bachelor of Computer Engineering

Tribhuvan University

Institute of Engineering, Pulchowk Campus, Nepal

2011

A thesis submitted in partial fulfillment

of the requirements for the

Master of Science in Computer Science

Department of Computer Science

Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas

May 2016

www.manaraa.com

c© Tirambad Shiwakoti, 2016

All Rights Reserved

www.manaraa.com

ii

Thesis Approval

The Graduate College

The University of Nevada, Las Vegas

April 22, 2016

This thesis prepared by

Tirambad Shiwakoti

entitled

Parallel Static Object Detection

is approved in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

Department of Computer Science

Ajoy K. Datta, Ph.D. Kathryn Hausbeck Korgan, Ph.D.
Examination Committee Chair Graduate College Interim Dean

John Minor, Ph.D..
Examination Committee Member

Yoohwan Kim, Ph.D.
Examination Committee Member

Venkatesan Muthukumar, Ph.D.
Graduate College Faculty Representative

www.manaraa.com

Abstract

The need for parallelism is growing with the broadening of computing in the real world where computing

is an integral part of any field. In the early days of computing, adding transistors to the CPU could solve

computation complexity. This is not the case now, where we can no longer advance the hardware capabilities

at the pace of the advancement of computing problems. One of the fields which is intensive in computation

is image processing. If it were just for one frame of an image, we could cope with the computation overhead.

When the need is to compute video frames, in some cases real-time video analysis, sequential execution of

each frame could delay the result. In this thesis, we propose a parallel implementation of computing video

frames. In particular, we focus on detecting new static objects that arrive in the already defined static

background. This has practical implications as well. In a traffic crossing which is prone to accidents, this

can be used to detect a vehicle or person in distress. The sequential implementation of this is fairly simple.

However, as this is a computation-intensive problem, it would be more efficient to design a parallel solution.

iii

www.manaraa.com

Acknowledgements

I would like to express my sincere gratitude to my supervisor Dr. Ajoy K Datta for providing me with all

the guidance, motivation, and supervision to complete my thesis and other academic objectives.

I am also grateful to my thesis committee members Dr. Yoohwan Kim, Dr. John Minor and Dr.Venkatesan

Muthukumar. I would also like to offer my gratitude to my parents, my brothers and sisters for their love

and support. I am extremely thankful for the support of my lovely wife Dinu.

Finally, I would like to thank all my friends, seniors, and juniors for providing me all the help they can

to complete this thesis.

Tirambad Shiwakoti

University of Nevada, Las Vegas

May 2016

iv

www.manaraa.com

Table of Contents

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables vii

List of Figures viii

List of Algorithms ix

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Objective . 2

1.3 Outline . 3

Chapter 2 Background 4

2.1 Parallelism vs Concurrency vs Distributed Systems . 4

2.1.1 Parallelism . 4

2.1.2 Concurrency . 7

2.1.3 Distributed Systems . 7

2.2 Computer Vision and Image Processing . 8

2.2.1 Background Subtraction . 8

2.2.2 Frame Difference . 8

Chapter 3 Literature Review 9

3.1 Distributed Systems Applications . 9

3.2 Data Clustering and Parallel Algorithm . 10

3.3 Using MPI for Parallel Programming . 10

3.4 Motion Detection and Background Subtraction . 11

3.4.1 Frame Difference . 11

v

www.manaraa.com

3.4.2 Motion tracking using Gaussian Distribution . 12

Chapter 4 Methodologies 13

4.1 Parallel Static Object Detection : Algorithm Design . 13

4.2 Frame Difference in Parallel Static Object Detection . 15

4.3 Parallel Static Object Detection : Pseudo Code . 16

4.4 Implementation Tools . 18

4.4.1 Programming Language : C . 18

4.4.2 Image Processing Library : OpenCV 3.1.0 . 18

4.4.3 Message Passing Interface : Open MPI 1.6.5 . 18

Chapter 5 Results 19

5.1 Experimental Setup . 19

5.2 Normal Image . 20

5.3 Gray Image . 22

5.4 Blue Image . 24

5.5 Green Image . 26

5.6 Red Image . 28

5.7 Result Analysis . 30

Chapter 6 Conclusion and Future Work 31

Bibliography 32

Curriculum Vitae 33

vi

www.manaraa.com

List of Tables

Table 3.1 Conceptual Syntax of frequently used functionality in MPI. For detailed usage, see [1] 11

Table 5.1 Experimental Setup Specifications . 19

vii

www.manaraa.com

List of Figures

Figure 2.1 Shared Memory Multiprocessor Model . 5

Figure 2.2 Message Passing Multiprocessor Model . 6

Figure 3.1 Distributed Data Mining Framework . 9

Figure 4.1 Design of Parallel Static Object Detection. 14

Figure 5.1 Normal with Motion . 20

Figure 5.2 Static Object Detection in Normal . 21

Figure 5.3 Gray with Motion . 22

Figure 5.4 Static Object Detection in Gray . 23

Figure 5.5 Blue with Motion . 24

Figure 5.6 Static Object Detection in Blue . 25

Figure 5.7 Green with motion . 26

Figure 5.8 Static Object Detection in Green . 27

Figure 5.9 Red with Motion . 28

Figure 5.10 Static Object Detection in Red . 29

viii

www.manaraa.com

List of Algorithms

1 Algorithm: Parallel Static Object Detection . 17

ix

www.manaraa.com

Chapter 1

Introduction

1.1 Motivation

With the advancement in computing, today’s computers are able to solve the much more complex problems.

But with the advancement in hardware architecture, the problems are also becoming much more complex.

The complexity of these problems can be defined from two perspectives: size and computation complexity.

Some problems are complex to solve because of the sheer size of the data to be processed. Some problems

are complex due to the higher computation complexity required for the solution.

These problems can be solved either through sequential or parallel programming. But as the complex-

ity increases, the sequential approach becomes much more unrealistic because we cannot make a single

processor so much faster to catch up with the complexity. So we have to use parallel programming to solve

these complex problems. The problem using the parallel programming approach is to identify the part of

the program which can be parallelized. It turns out that in a general program, the proportion of the code

which can be parallelized is low compared to the sequential part of the program.

One of the fields which can use parallel programming to solve its problem is the field of image process-

ing. If we focus on an application which uses only single image(frame) processing, there is no point of

applying parallel programming to solve the problem, because the communication overhead will have greater

effect when we try to process only a single image. Whereas if we are trying to process a stream of frames,

like in analyzing video, the processing of different frames on different nodes of a multiprocessor system will

become beneficial.The key in this approach is to use an algorithm which can be parallelized over different

nodes. Most of the image processing algorithms which uses adaptive models are difficult to parallelize. For

example, Adaptive background mixture models for real-time tracking [2] models the value of the particular

pixel as a mixture of Gaussian. If we were to implement a parallel version of this algorithm then we would

not be able to distribute incoming frames from the video to different nodes since each pixel requires the

1

www.manaraa.com

history from the previous frame for the proper modeling. So, we have to identify an algorithm which can be

parallelized over different nodes in the system.

1.2 Objective

The purpose of parallel programming is to identify the part of the program that can be parallelized and to

share the computation of the parallel execution over different nodes in the network. There are various ways

of designing a parallel solution. Most of the parallel algorithms are designed from the sequential version

with some modification to suit the parallel hardware. In this thesis, we are proposing a parallel algorithm

to identify new static objects in an already defined background. There are various factors to consider before

designing a parallel solution. We have to design our solution in such a way that there is less communication

overhead. The ideal parallel solution would break the computation, distribute to different nodes, compute

in different nodes and aggregate the result in a result node.

Nowadays, we have multiprocessor machines which have many processors working together using shared

memory. In addition to it, there are also multicore machines where each processor has multiple cores. With

the correct implementation, parallelism can be achieved in multicore and multiprocessor machines. For ex-

ample, concurrent threads can be run on different cores and each thread can compute different computation

so that parallelism can be achieved with the use of concurrency. As we know that each machine is limited

in its number of processors and number of cores, the ideal parallel solution would be the utilization of many

machines over a network. This solution has a drawback as well. Since we are using many machines we have

to establish a communication protocol between the machines. This will give rise to a communication cost.

So the ideal solution will find a trade-off between communication cost and computation gain.

In our research, we are achieving parallelism by using multiple nodes and using a communication proto-

col to communicate data between different nodes in the system. The core of our solution is to send the

incoming frames to different nodes where each node computes on each frame and sends the result to a node

which collects the result frames for the user to see the result. While communicating and computing the

frames we have designed an algorithm which identifies the first frame as the static background. The static

background is passed to all the nodes for reference. When a node receives a new frame, it compares the

new frame with the reference frame to identify any new object in the frame. Two consecutive results are

then compared in each node to identify any static object that has appeared in the frame. We will present a

detailed explanation in the methodologies chapter.

2

www.manaraa.com

1.3 Outline

In chapter 1, we discussed the area of the research. We gave a brief overview of various aspects of the

research and the motivation for this research

In chapter 2, we will discuss the different types of parallelism.We will discuss similarities and differences

between parallel programming, concurrency, and distributed computing. We will also discuss the various

algorithms for motion detection in image processing. Our major effort would be to discuss the incorporation

of image processing algorithms with parallel programming. We will discuss the details on drawbacks and

limitations when using parallelism with different image processing algorithms.

In chapter 3, we will discuss various areas of research that are being conducted in the field of parallel

programming and distributed computing. We will particularly focus on research which uses the traditional

sequential algorithm and implements a parallel version of the algorithm. We will also discuss research in the

field of image processing and motion detection.

In chapter 4, we will discuss our approach to the parallel programming and image processing solution.

We will discuss in detail how our parallel algorithm works. We will also discuss the implementation of the

algorithm. We will discuss the results obtained and analyze the result from the theoretical perspectives of

parallel programming.

In chapter 5, we will discuss the results obtained from our algorithm and analyze them.

In chapter 6, we will provide the conclusion of our research and drawbacks and limitations of our research.

We will also discuss different avenues which can be explored in the future in this area of research.

3

www.manaraa.com

Chapter 2

Background

2.1 Parallelism vs Concurrency vs Distributed Systems

Modern computers are equipped with many processors running under the same system over a shared memory.

Each processor in this multiprocessor system can also have multiple cores in them. With this advancement of

technology, the concept of parallelism, concurrency, and distributed systems are somewhat merged. But there

are some underlying differences. Parallel Programming is the execution of many processes simultaneously

whereas concurrency is a system where many processes/threads execute independently. Parallel programming

may or may not use shared memory, whereas distributed systems generally consist of independent sets of

computers with their own local memory communicating with each other using message passing. These

differences are discussed in detail in the following sections.

2.1.1 Parallelism

Parallelism is the simultaneous execution of multiple processes. As problems become more complex, it will

take more time for a single processor to compute the problem. One of the ways of increasing computational

speed is by using multiple processors operating on a single problem. While doing so, the complex problem is

split into parts and each part is processed in a separate processor in parallel [3, p. 5]. For a multiprocessor

system to work they need to communicate with each other. This is done either through shared memory or

through message passing.

4

www.manaraa.com

Shared Memory Multiprocessor System

The most natural extension of a single processor system to a multiprocessor system is to add a number of

processors which work over a shared memory. In this system, multiple processors are connected to multiple

memory modules such that each processor can access any memory module in a shared memory configuration

[3, p. 6].

Figure 2.1: Shared Memory Multiprocessor Model

5

www.manaraa.com

Message Passing Multicomputer

An alternative to a shared memory multiprocessor system is the message passing multiprocessor system

where multiple computers, i.e, processors with their own local memory, are connected by an interconnection

network. In this type of system, communication between processors is done through the interconnection

network where message are passed between computers using message passing protocols [3, p. 8].

Figure 2.2: Message Passing Multiprocessor Model

6

www.manaraa.com

2.1.2 Concurrency

Concurrency is the composition of independently executing processes. Concurrency gives a way to structure

a program into independent pieces, and we have to find a way to coordinate these independent pieces using

different communication methods. Concurrency does not mean that different processes/threads run simulta-

neously as in parallelism. The execution of these processes/threads is independent to one another. So, if we

want to coordinate these executions we have to establish modes of communication between these process-

es/threads. Most of the programming languages have their own ways of synchronization for concurrency.

2.1.3 Distributed Systems

A distributed system is a system where many independent computer systems with their own sets of processors

and memory work together to solve a complex/big task by splitting the task [4] . Technically, a distributed

system is the same as a message passing multiple processor system where work is split into many tasks

for each computer and data/messages are communicated between these nodes/computers using a messaging

protocol. Open MPI(Message Passing Interface) is one of the popular Message Passing API developed for

communication between computers in parallel and/or distributed computing.

7

www.manaraa.com

2.2 Computer Vision and Image Processing

Computer vision in normal understanding is the study of images. The main goal of computer vision is to

extract information from images. Images, in terms of data structures, can be represented by an array where

elements of the array represent corresponding pixels from the image, and the value in the array represents

the corresponding value of the pixel from the image. After we quantify the image as a set of pixels values,

then we can perform different analysis on these values to obtain meaningful information from the image.

In our research, we are focusing on identifying static objects in an already defined static background. This

requires the study of the video. Videos are studied as a sequence of image frames in computer vision. To

identify new objects in the frame, we need a reference from the earlier frames. There are various ways of

analyzing video frames. We have to note that we will select or design only those algorithms which can be

parallelised. In this section, we will discuss some of the areas of image processing which are particularly

related to our solution.

2.2.1 Background Subtraction

Background Subtraction is widely used to detect moving objects in a frame from a static camera. The

fundamental basis of background subtraction is to get the difference between the current frame and the

reference frame. The reference frame is called the background frame [5].The background subtraction method

has to continually adjust the background due to various factors such as the change in light intensity, an

addition of new objects in the frame etc. There are various approaches for doing background subtraction

which will be discussed in the literature review section.

2.2.2 Frame Difference

Frame difference is one of the simplest ways of calculating the difference between the frames. Using this

approach, if we want to check whether there is a new object in the frame or not, we just check the difference

between the new frame and the reference frame. The main drawback of this approach is that the reference

frame is not adjusted with the change in various parameters as in the background subtraction method. But

there is one fundamental advantage when we parallelise this solution. Since there is only one reference frame,

we can compute the difference of incoming frames simultaneously in parallel nodes.

8

www.manaraa.com

Chapter 3

Literature Review

There is a lot of research being carried out in the field of parallel programming/distributed computing. There

is also much research done on the field of image processing, particularly in motion detection which is our

focus. In this section, first we will discuss research on parallel programming, and on how different sequential

algorithms are being parallelised. Then secondly, we will discuss the research done/being done in the field

of image processing and motion detection.

3.1 Distributed Systems Applications

Most of the distributed systems applications are based on huge data sets. With the increase in data size,

the usage of mining these big data sets and extracting the information is ever increasing. [6] There were

various problems in traditional centralized data warehouse systems used for centralized data mining. For

example, we have to regularly upload critical data in the center. Due to the centralized system, there is

a long response time. Due to this, a distributed data mining system is much more effective. The below

diagram displays the distributed data mining architecture. [6]

Figure 3.1: Distributed Data Mining Framework

9

www.manaraa.com

We can understand from the figure that a true data mining application utilizes the distributed system

in full. Here, local data sources are mined locally using a data mining algorithm to create a local model.

Then these local models are combined using aggregation to create a final model. This approach is beneficial

mainly in two contexts. The obvious one is that since a distributed system is used, it is much faster than

the traditional data warehousing architecture. The other one is that since there is no center collection of

data, privacy of the data remains intact.

3.2 Data Clustering and Parallel Algorithm

Mostly parallel algorithms are used in the cases where there are huge data sets involved. Sometimes even

with small data sets, if the solution of the problem requires iteration, then the use of parallel algorithms will

reduce the time complexity of the problem. One such algorithm which requires huge data sets to compute

is k-means algorithm. [7] In the K means algorithm we consider a set of n points X1, X2, X3, Xn. The

objective of this algorithm is to find a centroid point m. The following method is used to solve this problem

classically [8]

1. Start with k starting points.

2. Compute the Euclidean distance from all points to the k points. Then find the closest cluster centroid

among the k centroids.

3. Recompute centroid taking the average of the points associated with a centroid in step 2.

4. Repeat 2,3 until a point of convergence is met.

Using the parallel programming approach, the set of n data is broken into p equal parts where p is the

total number of processors. The set of k starting points is available to all processors. Now, each processor

calculates the euclidean distance between all the points it has with all the k set of points. But there is the

extra overhead of communication, when processors have to communicate the set of points associated with a

particular centroid point. In this way, the sequential algorithm is parallelised into a parallel solution.

3.3 Using MPI for Parallel Programming

Message Passing Interface (MPI) is a library specification which is used extensively for data communication

between independent processes [1]. MPI was designed exclusively for parallel hardware. As we discussed

in 2.1.1, a message-passing multicomputer consists of independent processors with their own local memory

communicating with each other using message passing protocol. MPI is a library defining the protocol

for these systems and consists of various functionality to communicate between processes. Some of the

functionality which is used frequently is discussed in the table below.

10

www.manaraa.com

Functions Usage

MPI Init() Initialize the MPI execution environment
MPI Comm size() Returns the number of processors
MPI Comm size() Returns the identifier for the process running (0 to Number of Processors - 1)
MPI Send() Send Data from one processor(SOURCE) to another processor(DESTINATION)
MPI Recv() Receive Data coming from the source
MPI Status() A data structure send in the MPI Send() Packets which contains meta information
MPI Finalize() Terminate the MPI execution environment

Table 3.1: Conceptual Syntax of frequently used functionality in MPI. For detailed usage, see [1]

3.4 Motion Detection and Background Subtraction

As discussed in 2.2.1, Background Subtraction is a widely-used method for detecting moving objects inside

a frame from a static camera [5]. The Background subtraction method can be divided into following points.

1. Declare a background. This is the initial static frame which serves as the initial background.

2. Apply a motion detection algorithm to find any new objects in the frame.

3. Update the background to adapt to the variance luminance conditions and geometry settings.

There are several methods proposed for performing the background subtraction method. Some of them

are:

3.4.1 Frame Difference

Frame difference is the technique of finding new objects in the frame by checking the difference between

the new frame and the reference frame. This is basically done by comparing the pixel values of the new

frame with the old frame. If change is seen in the new pixel, then it implies that a new object has appeared

in the frame. This is a primitive image process algorithm for motion detection. The main drawback of

this algorithm is in the adjustment of the background frame or the reference frame. This drawback can be

somewhat minimized by the use of threshold values. In this approach, the change in pixel value up to the

threshold is not considered as the appearance of a new object in the frame. The new object is considered

only when the pixel difference exceeds the threshold value.

11

www.manaraa.com

3.4.2 Motion tracking using Gaussian Distribution

As discussed in 3.4, most of the background subtraction methods are adaptive in nature which modifies the

background with the change in environment. Most of these algorithms are not robust in the case where there

can be many moving objects in the frame, particularly if they move very slowly. Chris Stauffer and W.E.L

Grimson have proposed a more robust algorithm in their paper Adaptive background mixture models for real-

time tracking [2]. Most of the adaptive models value all the pixels as one particular distribution. Instead,

it will be more robust if pixel-specific modeling is done. The gaussian of the pixels, which corresponds to

the background color, is considered the background and those which do not correspond are considered to be

foreground.

12

www.manaraa.com

Chapter 4

Methodologies

The main objective of our research is to find new static objects in an already defined background using

parallel programming. In this chapter, we will discuss the idea behind our proposed solution. We will also

discuss our algorithm including pseudo code. We will also discuss the tools used for the implementation of

our algorithm.

4.1 Parallel Static Object Detection : Algorithm Design

The problem statement of our research is: find a solution to finding any new static objects that appear

in a defined background using parallel programming. While designing any parallel algorithm, we have to

understand that solving any problem through parallelism must follow the fundamental rule of divide and

conquer. So, we have to design our algorithm in such a way that there will be a heavily computation task

that can be divided between multiple nodes. Our algorithm can be summarized in the following points:

1. The Master node collects video frames from a source (video file or a camera).

2. The Master node then sends a background frame to all worker nodes for reference.

3. Worker nodes store background frames and all its grayscale, blue, green and red channel frames.

4. The Master Node continuously sends new frames to the worker nodes .

5. Worker nodes receive new frames and break them into channels like the background frames. It computes

the frame difference between two successive new frames and the background frame to identify any new

static pixels in the frame.

6. Worker nodes send results to their respective collector.

7. The Collector collects their respective result frames and writes them to a video file.

8. Users can see five different results for five types of videos of the same frame.

13

www.manaraa.com

Figure 4.1: Design of Parallel Static Object Detection.

As shown in the diagram 4.1, we can break different functionality of our algorithm into 4 different actions.

• Action 1: Read frames from the video files or camera.

• Action 2: Send the initial background or the reference frame to the worker nodes.

• Action 3: Send the new frames to the worker nodes.

• Action 4: After computation of the frame difference, send the result frames to their respective channel

collector. The Collector collects the result frames and writes into a result video.

14

www.manaraa.com

4.2 Frame Difference in Parallel Static Object Detection

We have used the frame difference method for our algorithm. Any worker node at any particular instant

will have three sets of frames. The background or the reference frame and the two new frames to compare

with the background frame and with themselves. It is not always sure that the new frames are successive.

The frame gap between the two new frames depends upon the number of worker nodes. This is because the

master node sends the continuous frame in a loop starting from worker 1 to worker n and then repeats again

from the worker node 1. If there are 5 worker nodes, then the frame gap between two successive new frames

for a worker node is 5, i.e if the first new frame of a worker is indexed at 3 then it will receive the new frame

indexed at 3 + 5 = 8. There will be a frame gap of 5 frames between two successive frames for a particular

node.

15

www.manaraa.com

4.3 Parallel Static Object Detection : Pseudo Code

Data: Input Video File testVideo.avi

Result: Output Video Files out Normal.avi, out Gray.avi, out Blue.avi, out Green.avi, out Red.avi

rank = current process rank

size = get size/total number of nodes

destination = 1

if (rank is 0 // Master) then

while (The end of video file/ camera capture) do
frame = read frame from video file

if (frame is first frame) then

MPI SEND(First frame as background to worker nodes)

end

else

MPI SEND(Send frame to worker node destination)

destination ++;

end

if (destination is greater than or equal to (size - 5)) then
Reset destination to 1

end

end

end

else if (rank is worker node) then

backgroundFrame = MPI Recv(Receive background frame from the master)

break backgroundFrame into Gray, Blue, Red and Green Channel

while (The end of video frame from master) do

firstNewFrame = MPI Recv(frame from master)

break firstNewFrame into Gray, Blue, Red and Green Channel

secondNewFrame = MPI Recv(frame from master)

break secondNewFrame into Gray, Blue, Red and Green Channel

if ((background - firstNewFrame) is greater than threshold and (firstNewFrame -

secondNewFrame) is less than threshold) then
Static object detected

Send highlighted frame to collector

end

end

end

16

www.manaraa.com

else if (rank is size - 1) then

normalFrame = MPI Recv(Normal frame from workers)

out Normal.avi.append(normalFrame)

end

else if (rank is size - 2) then

grayFrame = MPI Recv(GrayScale frame from workers)

out Gray.avi.append(grayFrame)

end

else if (rank is size - 3) then

blueFrame = MPI Recv(Blue frame from workers)

out Blue.avi.append(blueFrame)

end

else if (rank is size - 4) then

greenFrame = MPI Recv(Green frame from workers)

out Green.avi.append(greenFrame)

end

else if (rank is size - 5) then

redFrame = MPI Recv(Red frame from workers)

out Red.avi.append(redFrame)

end

Output out Normal.avi, out Gray.avi, out Blue.avi, out Green.avi, out Red.avi
Algorithm 1: Algorithm: Parallel Static Object Detection

17

www.manaraa.com

4.4 Implementation Tools

Implementation of our research is done in structured programming. There were some external libraries used

for image processing and Message Passing. We will discuss the usage of those tools in this section.

4.4.1 Programming Language : C

One of the major reasons for using C is because C has a close association with hardware and compiles faster

than other object oriented languages.

4.4.2 Image Processing Library : OpenCV 3.1.0

OpenCV is an open source Computer Vision Library. OpenCV is the most popular library used in com-

puter vision, particularly focusing on real time computer vision. The reason for using OpenCV is its huge

functionality which provides various interfaces with image processing. By using OpenCV, we don’t have to

focus on array manipulation of images extensively. We have used OpenCV mostly for reading, writing and

manipulation of images in this research. [9]

4.4.3 Message Passing Interface : Open MPI 1.6.5

Open MPI is also an Open Source Message Passing interface. OpenMPI provides a set of functionality to

access different functions of a message passing system [1] . OpenMPI hides the connection layer from the

programmer and provides interfaces to communicate between processors. One of the main drawbacks of

Open MPI is the difficulty in debugging MPI code in our program.

18

www.manaraa.com

Chapter 5

Results

5.1 Experimental Setup

System Parameters Specifications

Architecture x86 64
CPU op-mode(s) 32-bit, 64-bit
Byte Order Little Endian
CPU(s) 8
On-line CPU(s) list 0-7
Thread(s) per core 2
Core(s) per socket 4
Socket(s) 1
NUMA node(s) 1
Vendor ID GenuineIntel
CPU family 6
Model 60
Stepping 3
CPU MHz 800.000
BogoMIPS 4788.74
Virtualization VT-x
L1d cache 32K
L1i cache 32K
L2 cache 256K
L3 cache 6144K
NUMA node0 CPU(s) 0-7

Table 5.1: Experimental Setup Specifications

Following are the snapshots of the resulting frames grabbed from the result videos of Normal Video,

Grayscale Video, Blue Channel Video, Green channel video and Red Channel Video.

19

www.manaraa.com

5.2 Normal Image

Figure 5.1: Normal with Motion

20

www.manaraa.com

Figure 5.2: Static Object Detection in Normal

21

www.manaraa.com

5.3 Gray Image

Figure 5.3: Gray with Motion

22

www.manaraa.com

Figure 5.4: Static Object Detection in Gray

23

www.manaraa.com

5.4 Blue Image

Figure 5.5: Blue with Motion

24

www.manaraa.com

Figure 5.6: Static Object Detection in Blue

25

www.manaraa.com

5.5 Green Image

Figure 5.7: Green with motion

26

www.manaraa.com

Figure 5.8: Static Object Detection in Green

27

www.manaraa.com

5.6 Red Image

Figure 5.9: Red with Motion

28

www.manaraa.com

Figure 5.10: Static Object Detection in Red

29

www.manaraa.com

5.7 Result Analysis

From the set of results, we can see that our algorithm performs best when there is an unaltered Normal

Image. This is because, Normal image has information on all the Red, Blue and Green channel of the

pixel, i.e, it is a 3 channel image. But we can see that on all the other channel, frames are flickered. Since

these single channel images do not have information on all the channels, frame difference does not perform

optimally with these images. This result overall shows that the frame differencing method does not perform

well with the channel images which only consist of single channel data, but it performs well for the Normal

Image which contains information of all the channels.

30

www.manaraa.com

Chapter 6

Conclusion and Future Work

In this research, we learned that image processing and a parallel algorithm can go side by side. We proved

this by using a primitive method of frame difference and thresholding, because these methods are intuitive

when they are parallelised,

For future work, we can expand our parallel algorithm to incorporate more advanced algorithms in im-

age processing. For Example, we can implement parallel programming with adaptive algorithms. In that

scenario, instead of breaking videos by frames, we can use the approach of breaking a frame by pixels where

each node works for a particular set of pixels in a frame, In this way they can maintain the historical

information of the set of pixels which is essential for adaptive algorithms.

31

www.manaraa.com

Bibliography

[1] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: portable parallel programming with the message-passing

interface. MIT press, 1999, vol. 1.

[2] C. Stauffer and W. E. L. Grimson, “Adaptive background mixture models for real-time tracking,” in

Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on., vol. 2. IEEE,

1999.

[3] B. Wilkinson and M. Allen, ”Parallel Programming”, Techniques and Applications Using Networked

workstations and Parallel Computers, M. Horton, Ed. Prentice-Hall, Inc., 1999.

[4] “Chapter 4: Distributed and parallel computing,” [Online; accessed 24-September-2015]. [Online].

Available: http://wla.berkeley.edu/∼cs61a/fa11/lectures/communication.html

[5] M. Piccardi, “Background subtraction techniques: a review,” in Systems, man and cybernetics, 2004

IEEE international conference on, vol. 4. IEEE, 2004, pp. 3099–3104.

[6] B.-H. Park and H. Kargupta, “Distributed data mining: Algorithms, systems, and applications,” 2002.

[7] I. S. Dhillon and D. S. Modha, “A data-clustering algorithm on distributed memory multiprocessors,” in

Large-Scale Parallel Data Mining. Springer, 2002, pp. 245–260.

[8] J. A. Hartigan, “Clustering algorithms,” 1975.

[9] “Reading and writing images and video,” [Online; accessed 24-September-2015]. [Online]. Avail-

able: http://docs.opencv.org/2.4/modules/highgui/doc/reading and writing images and video.html#

reading-and-writing-images-and-video

32

www.manaraa.com

Curriculum Vitae

Graduate College

University of Nevada, Las Vegas

Tirambad Shiwakoti

Degrees:

Bachelor of Computer Engineering 2011

Tribhuvan University, Institute of Engineering, Pulchowk Campus, Nepal

Thesis Title: Parallel Static Object Detection

Thesis Examination Committee:

Chairperson, Dr. Ajoy Datta, Ph.D.

Committee Member, Dr. Yoohwan Kim, Ph.D.

Committee Member, Dr. John Minor, Ph.D.

Graduate Faculty Representative, Dr. Venkatesan Muthukumar, Ph.D.

33

	Parallel Static Object Detection
	Repository Citation

	tmp.1473952981.pdf.WiL5F

